Glutamatergic and GABAergic agonists increase [Ca2+]i in avian cochlear nucleus neurons.
نویسندگان
چکیده
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are stimulated by glutamate, released from the auditory nerve, and GABA, released from both interneurons surrounding NM and from cells located in the superior olivary nucleus. In this study, the Ca2+ indicator dye Fura-2 was used to measure Ca2+ responses in NM stimulated by glutamate- and GABA-receptor agonists using a chicken brainstem slice preparation. Glutamatergically stimulated Ca2+ responses were evoked by kainic acid (KA), alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), and N-methyl-D-aspartate (NMDA). KA- and AMPA-stimulated changes in [Ca2+]i were also produced in NM neurons stimulated in the presence of nifedipine, an L-type Ca2+ channel blocker, suggesting that KA- and AMPA-stimulated changes in [Ca2+]i were carried by Ca2(+)-permeable receptor channels. Significantly smaller changes in [Ca2+]i were produced by NMDA. When neurons were stimulated in an alkaline (pH 7.8) superfusate, NMDA responses were potentiated. KA- and AMPA-stimulated responses were not affected by pH. Several agents known to stimulate metabotropic receptors in other systems were tested on NM neurons bathed in a Ca2+ free-EGTA--buffered media, including L-cysteine sulfinic acid (L-CSA), trans-azetidine dicarboxylic acid (t-ADA), trans-aminocyclo-pentanedicarboxylic acid (t-ACPD), and homobromoibotenic acid (HBI). The only agent to reliably and dose-dependently increase [Ca2+]i was HBI, an analog of ibotenate. GABA also stimulated increases in [Ca2+]i in NM neurons. GABA-stimulated responses were reduced by agents that block voltage-operated channels and by agents that inhibit Ca2+ release from intracellular stores. Whereas GABA-A receptor agonist produced increases in [Ca2+]i GABA-B and GABA-C receptor agonists had no effect. There appear to be several ways for [Ca2+]i to increase in NM neurons. Presumably, each route represents a means by which Ca2+ can alter cellular processes.
منابع مشابه
Endogenous mGluR activity suppresses GABAergic transmission in avian cochlear nucleus magnocellularis neurons.
GABAergic transmission in the avian cochlear nucleus magnocellularis (NM) of the chick is subject to modulation by gamma-aminobutyric acid type B (GABA(B)) autoreceptors. Here, I investigated modulation of GABAergic transmission in NM by metabotropic glutamate receptors (mGluRs) with whole cell recordings in brain slice preparations. I found that tACPD, a nonspecific mGluR agonist, exerted dose...
متن کاملGlutamate regulates IP3-type and CICR stores in the avian cochlear nucleus.
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are activated by glutamate released from auditory nerve terminals. If this stimulation is removed, the intracellular calcium ion concentration ([Ca2+]i) of NM neurons rises and rapid atrophic changes ensue. We have been investigating mechanisms that regulate [Ca2+]i in these neurons based on the hypothesis that loss of Ca2+ ho...
متن کاملControl of a depolarizing GABAergic input in an auditory coincidence detection circuit.
Neurons in the chicken nucleus laminaris (NL), the third-order auditory neurons that detect the interaural time differences that enable animals to localize sounds in the horizontal plane, receive glutamatergic excitation from the cochlear nucleus magnocellularis (NM) and GABAergic inhibition from the ipsilateral superior olivary nucleus. Here, we study metabotropic glutamate receptor (mGluR)- a...
متن کاملEighth nerve activity regulates intracellular calcium concentration of avian cochlear nucleus neurons via a metabotropic glutamate receptor.
1. Neurons in the cochlear nucleus, nucleus magnocellularis (NM), of embryonic and neonatal chicks are dependent on eighth nerve activity for their maintenance and survival. Removing this input results in the death of 20-40% of the NM neurons and profound changes in the morphology and metabolism of surviving neurons. 2. One of the first changes in NM neurons after an in vivo cochlea removal is ...
متن کاملGlutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus.
The auditory nerve serves as the only excitatory input to neurons in the avian cochlear nucleus, nucleus magnocellularis (NM). NM neurons in immature animals are dependent upon auditory nerve signals; when deprived of them, many NM neurons die, and the rest atrophy. Auditory nerve terminals release glutamate, which can stimulate second messenger systems by activating a metabotropic glutamate re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurobiology
دوره 37 2 شماره
صفحات -
تاریخ انتشار 1998